Unconditional convergence of high-order extrapolations of the Crank-Nicolson, finite element method for the Navier-Stokes equations
نویسنده
چکیده
Error estimates for the Crank-Nicolson in time, finite element in space (CNFE) discretization of the Navier-Stokes equations require a discrete version of the Gronwall inequality, which leads to a time-step restriction. We prove herein that no restriction on the time-step is necessary for a linear, fully implicit variation of CN-FE obtained by extrapolation of the convecting velocity. Previous convergence analyses of CN-FE with linear extrapolation rely on a similar time-step restriction as the full CN-FE. We show: CN-FE with linear extrapolation is unconditionally convergent in the energy norm. We also show optimal convergence of CN-FE with extrapolation in a discrete L∞(H1)-norm and convergence of the corresponding discrete time derivative in a discrete L(L)-norm.
منابع مشابه
A Stabilized Local Projections Extrapolated Finite Element Method for the Navier-Stokes Equations
A full discrete stabilized finite element scheme for the transient Navier-Stokes equations is proposed, based on the pressure projection and the extrapolated trapezoidal rule. The transient Navier-Stokes equations are fully discretized by the lowest equal-order finite elements in space and the reduced Crank-Nicolson scheme in time. This scheme is stable for the equal-order combination of discre...
متن کاملA New Linearly Extrapolated Crank-nicolson Time-stepping Scheme for the Nse
We investigate the stability of a fully-implicit, linearly extrapolated Crank-Nicolson (CNLE) time-stepping scheme for finite element spatial discretization of the Navier-Stokes equations. Although presented in 1976 by Baker and applied and analyzed in various contexts since then, all known convergence estimates of CNLE require a time-step restriction. We propose a new linear extrapolation of t...
متن کاملConvergence analysis and error estimates for a second order accurate finite element method for the Cahn-Hilliard-Navier-Stokes system
In this paper, we present a novel second order in time mixed finite element scheme for the Cahn-Hilliard-Navier-Stokes equations with matched densities. The scheme combines a standard second order Crank-Nicholson method for the Navier-Stokes equations and a modification to the Crank-Nicholson method for the Cahn-Hilliard equation. In particular, a second order Adams-Bashforth extrapolation and ...
متن کاملUncoupling Evolutionary Groundwater-surface Water Flows Using the Crank-nicolson Leapfrog Method
Abstract. Consider an incompressible fluid in a region Ωf flowing both ways across an interface, I, into a porous media domain Ωp saturated with the same fluid. The physical processes in each domain have been well studied and are described by the Stokes equations in the fluid region and the Darcy equations in the porous media region. Taking the interfacial conditions into account produces a sys...
متن کاملStabilized finite element method based on the Crank-Nicolson extrapolation scheme for the time-dependent Navier-Stokes equations
This paper provides an error analysis for the Crank–Nicolson extrapolation scheme of time discretization applied to the spatially discrete stabilized finite element approximation of the two-dimensional time-dependent Navier–Stokes problem, where the finite element space pair (Xh,Mh) for the approximation (uh, p n h) of the velocity u and the pressure p is constructed by the low-order finite ele...
متن کامل